If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.6x^2+2x-3=0
a = 0.6; b = 2; c = -3;
Δ = b2-4ac
Δ = 22-4·0.6·(-3)
Δ = 11.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-\sqrt{11.2}}{2*0.6}=\frac{-2-\sqrt{11.2}}{1.2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+\sqrt{11.2}}{2*0.6}=\frac{-2+\sqrt{11.2}}{1.2} $
| 2(5n+8)=86 | | 5x+19+114+25=180 | | 4-9(6x-11)=-11-9(-12+6x) | | 150x+24=170x+20 | | 6(z+7)=90 | | -9w=10w-7 | | 3x=3200 | | 2x-4(7x-13)=-130 | | (x+2)(x-7)=x2-3x-28 | | 3^5x+2=243 | | 14x+7=15x-7 | | 5b-b=7 | | 19/15=4/x-5 | | 4.2+10m=6.81 | | 22=7n+4n | | 2(3m-3)=9m+24 | | 2(s+7)+12=8 | | −6c+36=-48 | | 5x+14=5(6)+4 | | (8x+10)+110=180 | | f(0)=2^2-2 | | (8x+10)-110=180 | | f(4)=5(2) | | 12.1+h=65 | | f(4)=5(2)^4 | | 5c+2=7 | | 49=7^x-4 | | 49=7^{x-4} | | 7p-12+8p=33 | | 5.7m=–8m+5.48 | | q-q+17q-4q+16q=29 | | 4p+9=3(3p-2) |